2022考研的考生们已经开始了第一轮复习备考计划,线性代数是2022考研数学复习的重要部分,建议考研数学基础不好的小伙伴早点开始复习,下面小编整理了2022年考研数学线性代数向量与线性方程组详解,一起来看看吧。
向量与线性方程组详解
(1)齐次线性方程组与向量线性相关、无关的联系
齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立––印证了向量部分的一条性质“零向量可由任何向量线性表示”
齐次线性方程组一定有解又可以分为两种情况:
①有唯一零解
②有非零解。
当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系––齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩&rarr线性相关、无关&rarr线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以过r个线性无关的解向量(基础解系)线性表示。
(3)非齐次线性方程组与线性表出的联系
非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
数学是考研重要的学科,而且这一科目需要掌握的内容多,考核的方向也相对固定。
(注:本文来自网络,如有侵权,请联系删除)
版权及免责声明
1,"raybet最佳电子竞技平台"网上的内容,包括文章、资料、资讯等, 凡注明"稿件来源:raybet最佳电子竞技平台"的,其版权 均为"raybet最佳电子竞技平台"即杭州isabelarena科技咨询有限公司所有 ,任何公司、媒体、网站或个人未经授权不得转载、链接、转贴或以其他方式使用。已经得到 "raybet最佳电子竞技平台"许可 的媒体、网站,在使用时必须注明"稿件来源:考研村",违者本网站将依法追究责任。
2,"raybet最佳电子竞技平台" 未注明"稿件来源:raybet最佳电子竞技平台"的 文章、资料、资讯等 均为转载稿,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。如擅自篡改为 "稿件来源:raybet最佳电子竞技平台" 或"稿件来源:考研村",本站将依法追究其法律责任。
3, 如本站转载稿涉及版权等问题,请作者见稿后在两周内与我们联系。